若1/x-1/y-1/x y=0求x/y=y/x
悬赏分:0| 已过期
若1/x-1/y-1/x y=0求x/y=y/x和(y/x)^3+(x/y)^3.
回 答共2条
1楼
1/x-1/y-1/(x+y)=0变形: y(x+y)-x(x+y)-xy=0 y2-x2-xy=0 由x≠0,y≠0,两边同除以xy: y/x-x/y-1=0 设y/x=t,则x/y=1/t, 上式变为 t-1/t-1=0 即t2-t-1=0 ∴ t=(1±√5)/2 1) 当t=(1+√5)/2时 y/x=(1+√5)/2 ,,x/y=2/(1+√5)=(√5-1)/2 ∴y2/x2=(1+√5)2/4=(3+√5)/2, x2/y2=2/(3+√5)=(3-√5)/2 ∴ (y/x)^3+(x/y)^3 =((y/x+x/y)(y2/x2-1+x2/y2) =[(1+√5)/2+√5-1)/2][(3+√5)/2-1+(3-√5)/2] =2√5 2)当t=(1-√5)/2 时, y/x=(1-√5)/2 ,,x/y=2/(1-√5)=-(√5+1)/2 ∴y2/x2=(1-√5)2/4=(3-√5)/2, x2/y2=2/(3-√5)=(3+√5)/2 ∴∴ (y/x)^3+(x/y)^3 =((y/x+x/y)(y2/x2-1+x2/y2) =[(1-√5)/2-(√5+1)/2][(3-√5)/2-1+(3+√5)/2 ] =-2√5
2楼
1/x-1/y-1/(x+y)=0变形: y(x+y)-x(x+y)-xy=0 y2-x2-xy=0 由x≠0,y≠0,两边同除以xy: y/x-x/y-1=0 设y/x=t,则x/y=1/t, 上式变为 t-1/t-1=0 即t2-t-1=0 ∴ t=(1±√5)/2 1) 当t=(1+√5)/2时 y/x=(1+√5)/2 ,,x/y=2/(1+√5)=(√5-1)/2 ∴y2/x2=(1+√5)2/4=(3+√5)/2, x2/y2=2/(3+√5)=(3-√5)/2 ∴ (y/x)^3+(x/y)^3 =((y/x+x/y)(y2/x2-1+x2/y2) =[(1+√5)/2+√5-1)/2][(3+√5)/2-1+(3-√5)/2] =2√5 2)当t=(1-√5)/2 时, y/x=(1-√5)/2 ,,x/y=2/(1-√5)=-(√5+1)/2 ∴y2/x2=(1-√5)2/4=(3-√5)/2, x2/y2=2/(3-√5)=(3+√5)/2 ∴∴ (y/x)^3+(x/y)^3 =((y/x+x/y)(y2/x2-1+x2/y2) =[(1-√5)/2-(√5+1)/2][(3-√5)/2-1+(3+√5)/2 ] =-2√5